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ABSTRACT

We consider positivity preserving property of first and higher order finite volume schemes

for one and two dimensional compressible Euler equations of gas dynamics. A general frame-

work is established which shows the positivity of density and pressure whenever the under-

lying one dimensional first order building block based on an exact or approximate Rie-

mann solver and the reconstruction are both positivity preserving. Appropriate limitation

to achieve high order positivity preserving reconstruction is described.
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1 Introduction

To solve a scalar conservation law

ut + div f(u) = 0 (1.1)

with possibly discontinuous solutions, one usually studies the total variation stability (in one

space dimension) or L °_ stability (in multi space dimensions) of the numerical schemes. The

schemes can usually be generalized to systems via local characteristic decompositions and

usually work equally well numerically. However, no stability property can be automatically

carried over to the nonlinear system case. For example, most second order TVD schemes, or

even some first order monotone schemes, when generalized to compressible Euler equations

of gas dynamics, do not always preserve the positivity of density and pressure. This may

cause problems in practical calculations when the solution is near vacuum, for example in

the computation of blast waves.

When considering the compressible Euler equations of gas dynamics, a natural stability

condition for the numerical approximation is positivity preserving for density and pressure.

Another possible k priori bound is the maximum principle for the specific entropy (Tad-

mor [10]), which seems extremely difficult to preserve for second and higher order schemes

(Khobalatte and Perthame [5]).

The positivity of density and pressure is already interesting because it allows one to derive

a rigorous CFL condition (limitation of the time step to use). Since we consider conservative

schemes, it also allows one to obtain 5_priori L 1 bounds on the density, momentum and energy.

In this sense, positivity of density and pressure is a weak stability condition. Of course for

these nonlinear systems, such a weak stability is not enough to assert the convergence of the

method and estimates on the derivatives are usually needed for that purpose. Note however

that for a large class of 2 × 2 systems in one dimension, weak stability (say in L °_) is enough

to prove the convergence of the method.

In this paper we will provide a general framework and illustrate by several examples the



way to impose positivity of density and pressure for finite volume schemes, for one and two

space dimensions and for first and higher order accuracy. Of course the first ingredient is a

positivity preserving exact or approximate Riemann solver, such as Godunov, Lax-Friedrichs,

Boltzmann type (Perthame [6]), and Harten-Lax-van Leer [3]. For a first order scheme, this

is enough to guarantee positivity of density and pressure, even for two dimensional problems

set on an arbitrary triangulation. However, for higher order finite volume schemes, the

reconstruction must also satisfy such a property. We will show that only the nodal values

needed for constructing the flux along a cell edge must be positive, in order to obtain a

positive scheme. The reconstructed function, which is a piecewise polynomial and can be

obtained in ENO spirit, needs not be positive everywhere.

This paper is organized as follows: we first prove a positivity result and apply it to a

third order scheme in one space dimension in Section 2. Then, in Section 3, we consider

first order positive schemes in two space dimensions for arbitrary triangulations. The fourth

section is devoted to second order schemes in two space dimensions. In the Appendix we

recall why Lax-Friedrichs scheme is positivity preserving.

2 Positivity in One Space Dimension and a Positive

Third Order Scheme

In this section we consider the one dimensional compressible Euler equations for perfect gas:

Ut + F(U)x = O, t > O, x e R (2.1)

with

1 2

U = (p, pu, E), E = -_pu + pe (2.2)

F(U) = (pu, pu_+ p,(E + p)u), p= (3"- 1)p_ (2.3)

where p is the density, u is the velocity, E is the total energy, p is the pressure, e is the

internal energy, and 3' > 1 is a constant (3' = 1.4 for air).



Let us recall for later purpose that for the pressure law in (2.3), the speed of sound is

given by c = V/7(7 - 1)e and thus the three eigenvalues of the system are u, u -4- c.

We give conditions on numerical schemes in order to satisfy the positivity property, by

which we mean that the resulting value of U should satisfy p > 0 (p;._ > 0 on the discrete

level) and p > 0 (p}_ > 0 on the discrete level), if the initial condition satisfies those positivity

conditions.

We first present the finite volume schemes under consideration, then we give a general

positivity theorenl, and finally we show how a third order reconstruction can be modified in

order to satisfy the assumption of the general theorem.

A general finite volume scheme can be written as

where n > 0 refers to the time step At and j E Z to the uniform space discretization of

the size Ax (to simplify the presentation), and $ - At- _7" Uj are approximations to the cell

averages of U in the cell C3 = (xj_},xj+½) at time level n, and I_7+}, l_+} are high order

approximations of the nodal values U_(xj+½) within the cells Ci and Ci+l, respectively. These

values can either be evolved as independent degrees of freedom such as in the discontinuous

Galerkin finite element method (see, e.g., [1]), or be reconstructed from the cell averages

t j. Let us recall that the general ENO philosophy [4] allows us to reconstruct, from the cell

averages U'--_'j,a piecewise polynomial function U'_(x) which is high order accurate (r-th order

if U"(x) is piecewise (r - 1)-th order polynomials), and conserves the local mean:

1

£ U"(x)dx = U_ (2.5)
/kx j

The nodal values needed in scheme (2.4) can then be set to

since the function U'_(x) is discontinuous at the cell interface xj+}.

3



What remains to be explained for scheme(2.4) is the flux function h(U, V). This is

assumed to be an exact or, in most cases, an approximate Riemann solver. In particular,

h(U, V) is a Lipschitz continuous function of both arguments, and is consistent with the

physical flux F(U) in (2.3): h(U, U) = F(U). We will further make the following

Assumption 1: h(.,.) produces a one dimensional first order scheme which satisfies the

positivity property under a CFL condition:

AII(lul+ c)ll_ _<s0 (2.7)

i.e., if p_' > 0 and p_' > 0 for all j E Z, then the solution U_ +_ of

us+' = u; - A[h(U;+l,u?) - h(V;,U;_,)] (2.s)

also satisfies p_+_ > 0 and p_,+l > 0 under the CFL condition (2.7).

We will call such a h(.,-) positivity preserving under the CFL condition (2.7). Examples

of positivity preserving (approximate) Riemann solvers include Godunov, Lax-Friedrichs (see

the Appendix), Boltzmann type [6] and Harten-Lax-van Leer [3].

Our first result is

Theorem 1. Assume h(., .) satisfies Assumption 1. If the reconstructed nodal values (___

have positive density and pressure for all j E Z, then the full scheme (2.4) is positivity

preserving under the CFL condition

AII(lul+ c)ll= < _o

where 0 < c_ < 1 is sufficiently small such that

u_ - _(u_i + _+__)

has positive density and pressure for all j C Z.

(2.9)

:=vj (2.10)

Remark 1. Of course e_ = 0 works. However, since U_½ are close to Uj, we can expect

1
that c_ is close to _.
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Remark 2. Here we restrict ourselves to first order Euler forward in time. TVD type high

order Runge-Kutta time discretization (Shu and Osher [9]) will keep the validity of Theorem

l, as it was shown in [5].

Proof of Theorem 1: Let us introduce three "first order" schemes within the cell Cj:

Uj- = U_-, -- h ,( -h __,(
3-_ ¢_ -- 2 -

(2.11)

The three of them are of the type (2.8), with possibly _ in the place of A. Therefore under
O¢

the CFL condition (2.9), the values U+, U- and 1_ all have positive density and pressure.

We set

= .(@ + +Uj _) _ (2.12)

Then the linear combination of the above three equalities in (2.11) with weights (c_, 1, c_) just

gives the scheme (2.4), thanks to the definition of Vj in (2.10).

.--vn. +1
Finally, (2.12) implies that, by concavity, Uj has also positive density and pressure.

The pressure is indeed a concave function of (p, pu, E).

[]

Theorem 1 tells us that, if we use a positivity preserving approximate Riemann solver,

then we only need to worry about positive density and pressure in the nodal values (_+½,

either from the reconstruction or from direct evolution. This can usually be achieved by a

further limitation upon Uj_+½, such that positivity of density and pressure is enforced and

accuracy is preserved in smooth regions. We now show, as an example, how this can be

done for a third order reconstruction. Let us consider a typical cell (-8, 6) where _ = -4_, in

which we are given three cell averages (t_,_-ff, E) with positive density and pressure. Let us



build three quadratic polynomials

X 2

p(:) = po+ p,: + E
X 2

X 2

p(x) = PO "4- pl x "-_ P2y

(2.13)

obtained by (i) fitting the average of (p, pu, @ + ¥P27-_)to (/5, _--ff,E) and (ii) fitting the nodal

values (p, pu, e__ + _)(+6) with the values obtained by a third order reconstruction, say

from the ENO procedure. These might be associated to a negative density and pressure.

Then we need an additional limitation. It can always be performed easily as shown in

Proposition 2: Given the three quadratic polynomials in (2.13), we can always perform

a limitation of their coefficients so that (i) the means of the three conserved variables are

preserved, and (ii) the nodal values have positive density and pressure.

Remark: The precise limitation, and the deduction of the appropriate coefficients in (2.13)

are given in the proof below.

Of course, combining Theorem 1 and Proposition 2, we obtain a positive preserving

scheme. A similar construction for second order schemes can be found in [6] and [5].

Proof of Proposition 2: First of all, let us fix some notations. Being given the cell averages

(/_, _--ff,E), we also define fi and/5 through

P--ff= Pfi, __ /Sfi2 + t5 (2.14)
2 7-1

Notice that we are given/_ > 0 and p > O.

_2

First step: The limitation on the density is rather easy. Since t_ = po+p2-_, we can modify

pl without altering the conservation of mass. To enforce positivity of p(-t-6) is equivalent to

impose a simple limitation on Pl:

62

Ip,16< po+ o2y. (2.15)
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But the right-hand-sideof (2.15) could benegative. Thereforewe first impose,for instance,

3_ _2
5_ > po> _ = po+ p_-g (2.16)4 T'

Indeed, this implies that

_2 (52

Ip_l7 = 31p_l-g-- 31/5- pol < < po

and now (2.15) can be imposed too.

Second step: Next the conservation of momentum implies the following relation which

gives u0 in terms of Ul, u2 and p(x):

_2 (52 _4

/)UO = /?U-- pllZ, _ -- tt2(,OOg -1t- P2_-_)
(2.17)

And the conservation of energy gives, after some easy calculations

1 2 (52 (54 (54 6] -4- P0 -'l- P2g (2.18)p=(7-1) -_(_0-a) _+_, p0-5 +e,i d +_,u_p,g+e,_]g]

As in the density case, we will impose, in order to get a positive pressure at the nodes, a

simple limitation on pl
as
-- (2.19)[p_t_ < po +p2 2

and thus we need some limitations in order to guarantee that the right-hand-side of (2.19)

is positive. As before we first impose the limitations on P0, ttl, tt2"

5

po < _ (2.20)

( (52 (53 (54) _ (2.21)u_(3'-l) Po_+[Pl[_-_+P2_ <--12

('_ '_) _ (2.22)u_(3' - 1) [P']-i-0 + P25--6 < 15

This defines a unique Uo through (2.17) and a unique p2 through (2.18). For these values we

deduce from (2.18), using (2.20):

2

< p- ,_po

= (-r-l)-_¢(_0-_)_+u, _ P°-g+P_N +P'_'_-f+P=_gg +3 P°+P'T

< (-y-l)u_ po-_+m-_+lpal-i- d +u_ m_+lp, IN +_ P0+P2



_2

and from (2.21)-(2.22) we deduce that Po + p2 T > 0 and thus (2.19) can also be imposed.

This concludes the description of a possible set of limitations, which proves Proposition 2.

Notice that these limitations (2.15), (2.16), (2.19), (2.20), (2.21) and (2.22) just amount to

1 (or larger) and thus they preserveavoid gradients or second order derivatives of the order

the accuracy in smooth regions.

3 First Order Positive Schemes in Two Dimensions

We now consider the equations

where

Ut+divF(U)=O t_>0, xER 2 (3.1)

1 2

u = (p,pu, E), u _ R_, E = _Plul + P_ (3.2)

F(U)=(pu, pu®u+pl,(E+p)u), p= (7- 1)pc (3.3)

We consider finite volume schemes set on a triangulation C. The control volumes will be

the triangles K C C. For each triangle K we denote by (/_-)1<_<3 the length of its three edges

(e_.)l<,<z, with outward unit normal (u_.)1<_<3. Finally, K(c_) will denote the neighboring

triangle along e_. and [K[ the area of the triangle K. Then, we consider the scheme

At 3

UR.+' = UR. IKI _ h(Uu(_),U?,.,_.)b,. (3.4)
ot=l

for some (approximate) Riemann solver h(U, V, u) in the direction u. We recall some classical

examples in the Appendix. The basic properties of h are now

h(U, V, u) = -h(V,U,-u), (conservativity) (3.5)

h(U,U,u) = F(U). v (consistency) (3.6)

Next, we also impose a positivity condition for the one dimensional solver obtained by

fixing u (see the Appendix for examples). This is the same as Assumption 1 in the previous

section, which now means that the solution U, a four component vector, of

/) = U - A [h(V, U,u) - h(U, W, u)] (3.7)



h&spositive density and pressureassoonasU, V, W do. Now, h is a four component vector.

The main result of this section is

Theorem 3: Let h(-,., .) satisfy (3.5)-(3.6) and the one dimensional positivity property As-

sumption 1. Then the scheme (3.4) satisfies the positivity property under the CFL condition

3

I_KAt(luKI-4-CK) < _olKI, for all K E C (3.8)
ot=l

Proof of Theorem 3: We define

Since

we have U_ +l

3 3

l_,.h(U_.,V_.,,_.)=F(U?,.)._ ,7d7;=0
_=1 cl=l

3
= _a=l _']a. And we conclude as in the one dimensional case.

(3.9)

4 Second Order Positive Schemes in Two Dimensions

We extend the result of tile previous section to second order schemes, i.e., in which edge

averages of tile flux are approximated with second order accuracy. It has to be noted that,

as usual, this means that the resulting scheme formally only has a first order truncation

error. In tile same way the first order schemes used in Section 3 formally only have zeroth

order truncation error but it is well known now that they are convergent (see for example tile

pret)rints of Szepessy entitled, "Measure valued solutions to conservation laws with boundary

conditions", of Champier, Gallouet and Herbin entitled "Convergence of an upstream finite

volume scheme on a triangular mesh for nonlinear hyperbolic equations", and of Coquel and

LeFloch entitled "The finite volume method on general triangulations converges to general

conservation laws").

As for the one dimensional case, we give a general result assuming a positive reconstruc-

tion.



We now consider an approximation of the two dimensional Euler equation (:3.1) under

the form

At 3

+1= uT, I/,'l- -- _vt<(o,),V" _. ,UK)l K (4.1)
ot=l

where we use the notations of Section 3. We still assume that the approximate Riemann

solver h satisfies the one dimensional positivity property Assumption 1. The main difference

with the situation in Section 3, is that we now use second order approximations U_: _, U_.{_)"'_

of U n at the center of the edge e_.. U_ '_ is such an approximation in the triangle K, UK(_) is

in the triangle K(a) neighboring K along the edge e_. These values can be obtained using

a slope reconstruction, or an interpolation together with the interpretation of functions as

piecewise constant in subcells as in Perthame and Qiu [7], or being evolved as independent

degrees of freedom in the discontinuous Galerkin finite element method [2]. In any case, we

_0 c_can assume that these values are conservative, i.e. that there exists real numbers ( K)1<_<3,

such that
3

= _ _KU}_ = IK[U_ (4.2)
c¢=1

For instance, when U_ '_ is the value, in the middle of the edge e_., of a linear function

in K, the coefficients w_. are just IKI times the barycentric coordinates of the mass center

of K, with respect to the middle of the edges. Another example can be found in [7].

In order to state our result, let us introduce some notations: Denoting by C_. the middle

point of the edge e_<, we define

3 wkC_ ¢ (4.3)
Yk = E IKI

ot=l

then, the triangle K is naturally divided into three subtriangles (K_)1<_<3 obtained by

10



joining YK to the three vertices of K.

! .l,, J

-_= Y_

3 IC_

ca
Fig. 1 Sub-triangles decomposition of a triangle K

_,_'
The unit outward normals of the sub-triangle K_ are denoted by (v K )1<_,<3 where

O_Ot t

u_. '_ = u_.; and the length of the edges (e K )_<_,<3, where e_ :_ = e_., of the sub-triangle

K_, are respectively (/_(_'),<_,<3 with l_ '_ = l_-.

We can now state our main result:

Theorem 4: Let h satisfy the one dimensional positivity property Assumption 1, and assume

(4.2). Then the scheme (4.1) satisfies the positivity property under the CFL condition

3

Z_. At(iuKI + c_.) < ao_-_[[] _',_' _ _ _' (4.4)
a'=l

Proof of Theorem 4: Mimicking the proof of Theorem 3, let us define U_ +1'_ by

where

3

I Tn+l,oe ,or n,a=v_ o0K atZh(v_ '_'_, "'_- Uu , v) °)I) r3
tJ K v._K

B=I

U_ ,_,_ = UK(_) ,''_ U_.'_'a = U_ '_ for 13 ¢

Adding the equalities (4.5) for a = 1,2,3 we obtain (4.1) with

3

U_ "+1 _-_ E ITn+l'c_ oe,d K la K

o¢=1

Indeed, this is just a consequence of (4.2) and, for a #- 1_,

h(u;_,_,',u;,:_, .7.;') = -h(v_ '''° ,v_'' , .g'_)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

11



Now, applying Theorem 3 to (4.5), weobtain that the U_ .+l'a satisfy the positivity prop-

erty. By concave combination U_-+1 satisfies it too and the theorem is proved.

[]

Notice that (4.2) is not essential. It allows us to simplify greatly the statement of Theorem

4. If it is not satisfied, we require a two dimensional extension of the assumption (2.10) for

tile one dimensional case which could be quite difficult to check here. Finally, we refer to

[7] for an example of a reconstruction which satisfies the positivity property, together with

(4.2). There the control volume is a dual mesh and the positivity is proved using Boltzmann

solvers. Our approach here could be extended to a dual mesh and the full scheme, using a

Lax-Friedrichs or Godunov solver, satisfies also the positivity property.

5 Conclusion

We have considered how to preserve the positivity of density and pressure for solving coin-

pressible Euler equations using finite volume numerical methods. A general framework is

established to obtain positivity preserving first and higher order schemes for one and two

space dimensions.

12



6 Appendix: Positivity of the Lax-Friedrichs Scheme

We consider in this Appendix, the Lax-Friedrichs scheme for the two dimensional situation

in Section 3. Fixing a unit vector u, the velocity vector can be written as u = (v, w) in the

frame (u, uz). Then, we define

1 2
U = (p, pv, pw, E), E = _p(*, + ,,?) + pe,

H(U) = F(U) . u = (pv, pv 2 + p, pvw,(E + p)v)

The Lax-Friedrichs flux is

h(V,U) = l (U(U) + H(V) - /3(v U))

with

/_= II(lul+e)ll_

Let us consider U_', U_+1 with positive density and pressure, and set

v;,+'= - A

Then U__+l also has positive density and pressure.

consists of introducing a splitting of the equation

U, + H(U)x = 0

by

U, + (H(U) +/3U)_ = 0

Ut + (H(U) - gU):_ = 0

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

An easy way to see that (Sanders [8])

(6.6)

(6.7)

(6.8)

In other words, we write an exact solver for (5.7)-(5.8), which is easy because there are no

longer wave interactions with the choice of/3 in (6.4):

_! = Uj - A [H(/_ _) +/3_ _- H(U;__,)-/3U;'_,] (6.9)

= Uj -- A [H(/_+1)-/3_+, - U(U'f)+ flU; _] (6.10)

13



Now U_*+1 = u+_2 is indeed the solution to the Lax-Friedrichs scheme (6.5), and since the

exact solver preserves positivity (notice that tile addition of -t-flU is unessential for positivity

by Galilean invariance), by concave combination U_ +1 satisfies also the positivity property.

We need the CFL condition

1

AII(lul+ c)lloo_< (6.11)

in order to avoid the interaction of waves when solving (5.7)-(5.8) by (5.9)-(5.10).

Another version of Lax-Friedrichs scheme consists of introducing exact solvers on a stag-

gered grid. It will also obviously satisfy the positivity property. Both of these Lax-Friedrichs

schemes in addition satisfy the maximum principle on the specific entropy (Tadmor [10], [5]).

We would like to conclude this Appendix by a remark raised in [7] on two dimensional

schemes. Usually two dimensional schemes have to be written under the form (3.4) where the

approximate solver h(U, V, u) is indeed a function of three parameters U, V and u, satisfying

h(U, U, u) = F(U). u. In [7], the notion of "genuinely multidimensional solver" is introduced,

where the approximate solver is indeed under the special form h(U, V).u satisfying h(U, U) =

F(U). The Lax-Friedrichs scheme is obviously not "genuinely multidimensional" because its

value really depends on the frame (u, u 1) used to write the four components system (6:1)-

(6.2).

The only example we know of a "genuinely multidimensional" solver is a particular class

of Boltzmann solvers introduced in [7].

14
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